منابع مشابه
Cracks in topological rigidity
Topological rigidity is an analogue of the Baum-Connes conjecture, and is motivated by Mostow rigidity and Margulis superrigidity. I will discuss some of the places where this heuristic reasoning fails, and the rigidity shows some cracks – that are rather different than the places where strong forms of the Baum-Connes conjecture fails.
متن کاملTopological Rigidity for Hyperbolic Manifolds
Let M be a complete Riemannian manifold having constant sectional curvature —1 and finite volume. Let M denote its Gromov-Margulis manifold compactification and assume that the dimension of M is greater than 5. (If M is compact, then M = M and dM is empty.) We announce (among other results) that any homotopy equivalence h: (N,dN) —• (M,dM), where N is a compact manifold, is homotopic to a homeo...
متن کاملTopological Rigidity of Algebraic P
A projective algebraic surface which is homeomorphic to a ruled surface over a curve of genus g ≥ 1 is itself a ruled surface over a curve of genus g. In this note, we prove the analogous result for projective algebraic manifolds of dimension 4 in case g ≥ 2.
متن کاملA Topological Analogue of Mostow's Rigidity Theorem
Three types of manifolds, spherical, fiat, and hyperbolic, are paradigms of geometric behavior. These are the Riemannian manifolds of constant positive, zero, and negative sectional curvatures, respectively. (The positive and negative sectional curvatures may be assumed, after scaling, to be + 1 and -1.) There is an equivalent synthetic geometric definition of them in terms of coordinate charts...
متن کاملTopological rigidity for non-aspherical manifolds by
The Borel Conjecture predicts that closed aspherical manifolds are topological rigid. We want to investigate when a non-aspherical oriented connected closed manifold M is topological rigid in the following sense. If f : N → M is an orientation preserving homotopy equivalence with a closed oriented manifold as target, then there is an orientation preserving homeomorphism h : N → M such that h an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ergodic Theory and Dynamical Systems
سال: 1989
ISSN: 0143-3857,1469-4417
DOI: 10.1017/s0143385700004983